Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
J Hazard Mater ; 460: 132454, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703742

RESUMO

The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.


Assuntos
COVID-19 , Desinfetantes , Animais , Camundongos , Humanos , Antibacterianos/toxicidade , Compostos de Amônio Quaternário/toxicidade , Contenção de Riscos Biológicos , Pandemias , Indóis/toxicidade
2.
Analyst ; 147(14): 3360-3369, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35762842

RESUMO

The first water-soluble B-ring-indole-substituted flavonol-based cysteine (Cys) fluorescent probe, MICA (2-(1-methyl-1H-indol-3-yl)-4-oxo-4H-chromen-3-yl-acrylate), was developed, which simultaneously serves as a precursor of photoCORM. In PBS buffer (only 15% DMF), MICA can perform rapid (330 s), highly chemoselective (particularly for homocysteine and glutathione) and sensitive (limit of detection: 92 nM) sensing and visualization of exogenous and endogenous Cys in live HeLa cells and zebrafish over a wide linear concentration range (0-12 µM/2.4 equiv.). The fluorophore HMIC (3-hydroxy-2-(1-methyl-1H-indol-3-yl)-4H-chromen-4-one), actuated and quantitatively generated via the sensing reaction of the precursor MICA with Cys, was designed as a photoCORM. By modulating the light illumination intensity or illumination duration or photoCORM dosage, HMIC can provide precisely controlled quantitative and linear CO gas by visible light illumination in aerobic environments. For live HeLa cells, MICA and all reaction products showed low toxicity (over 85% cell viability versus 10 µM analyst) and efficient cellular uptake. In live HeLa cells and zebrafish, both exogenous and endogenous Cys can be visualized by MICA, and the location and CO liberation process of the generated HMIC can be tracked in real time through its fluorescence. Substitution of the B-ring of 3-hydroxy-flavone (3-FL) by indole results in a 52 nm absorption red-shift vs.3-FL. Our work is the first water-soluble B-ring-indole-substituted flavonol-based fluorescent probe that efficaciously detects and visualizes exogenous and endogenous Cys both in vitro and in vivo, simultaneously serving as a precursor of photoCORM, actuated by Cys and triggered by visible light, releasing linear CO in aerobic environments. This work not only provides promising applications for the detection and visualization of exogenous and endogenous Cys, and spatiotemporally controllable CO liberation in live systems, but will also facilitate the development of handy molecular tools for clinical diagnosis and CO gas therapy.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Flavonóis/farmacologia , Corantes Fluorescentes/toxicidade , Glutationa , Células HeLa , Homocisteína , Humanos , Indóis/toxicidade , Espectrometria de Fluorescência , Água , Peixe-Zebra
3.
Sci Rep ; 12(1): 4875, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318378

RESUMO

Chemopreventive properties of Brassica vegetables are attributed mainly to their characteristic compounds-glucosinolates (GLs) and their main hydrolysis products-isothiocyanates (ITCs) and indoles. In this study, we compared antiproliferative activity (MTT test in HT29 cells) and genotoxic effects (comet assay in HT29 cells and restriction analysis in a cell-free system) of three GLs (sinigrin (SIN), glucotropaeolin (GTL), and glucobrassicin (GLB)) with that of their major degradation products. Intact GLs did not exhibit cytotoxic activity, possibly due to their limited bioavailability. However, in the presence of myrosinase (MYR), GLs gained the ability to inhibit HT29 cells' growth. The addition of MYR caused the hydrolysis of GLs to the corresponding ITCs or indoles, i.e. compounds that show stronger biological activity than parent GLs. Pure ITC/indole solutions showed the strongest antiproliferative activity. Based on the results of restriction analysis, it was found that GLs to a greater extent than ITCs caused DNA modification in a cell-free system. In the case of GLs, metabolic activation by the S9 fraction increased this effect, and at the same time changed the preferential binding site from the area of base pairs AT to GC base pairs. Of all compounds tested, only benzyl ITC caused DNA damage detectable in the comet assay, but it required relatively high concentrations.


Assuntos
Antineoplásicos , Brassica , Brassica/metabolismo , Dano ao DNA , Glucosinolatos/química , Humanos , Indóis/análise , Indóis/toxicidade , Isotiocianatos/química , Isotiocianatos/farmacologia
4.
J Nanobiotechnology ; 20(1): 5, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983538

RESUMO

BACKGROUND: Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS: For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS: Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.


Assuntos
Indóis , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas/química , Oximas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Adolescente , Adulto , Idoso , Animais , Sobrevivência Celular/efeitos dos fármacos , Fluoresceína/química , Fluoresceína/farmacocinética , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/toxicidade , Leucócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanopartículas/toxicidade , Nanotecnologia , Oximas/química , Oximas/farmacocinética , Oximas/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Solventes/química , Adulto Jovem
5.
J Nanobiotechnology ; 19(1): 304, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600530

RESUMO

BACKGROUND: Although the treatments of skin wounds have greatly improved with the increase in therapeutic methods and agents, available interventions still cannot meet the current clinical needs. Therefore, the development of new pro-regenerative therapies remains urgent. Owing to their unique characteristics, both nanomaterials and peptides have provided novel clues for the development of pro-regenerative agents, however, more efforts were still be awaited and anticipated. RESULTS: In the current research, Hollow polydopamine (HPDA) nanoparticles were synthesized and HPDA nanoparticles loading with RL-QN15 (HPDAlR) that was an amphibian-derived peptide with obvious prohealing activities were prepared successfully. The characterization, biodistribution and clearance of both HPDA nanoparticles and HPDAlR were evaluated, the loading efficiency of HPDA against RL-QN15 and the slow-releasing rate of RL-QN15 from HPDAlR were also determined. Our results showed that both HPDA nanoparticles and HPDAlR exerted no obvious toxicity against keratinocyte, macrophage and mice, and HPDA nanoparticles showed no prohealing potency in vivo and in vitro. Interestingly, HPDAlR significantly enhanced the ability of RL-QN15 to accelerate the healing of scratch of keratinocytes and selectively modulate the release of healing-involved cytokines from macrophages. More importantly, in comparison with RL-QN15, by evaluating on animal models of full-thickness injured skin wounds in mice and oral ulcers in rats, HPDAlR showed significant increasing in the pro-regenerative potency of 50 and 10 times, respectively. Moreover, HPDAlR also enhanced the prohealing efficiency of peptide RL-QN15 against skin scald in mice and full-thickness injured wounds in swine. CONCLUSIONS: HPDA obviously enhanced the pro-regenerative potency of RL-QN15 in vitro and in vivo, hence HPDAlR exhibited great potential in the development of therapeutics for skin wound healing.


Assuntos
Fármacos Dermatológicos , Indóis , Nanopartículas , Peptídeos , Polímeros , Cicatrização/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Células HaCaT , Humanos , Indóis/química , Indóis/toxicidade , Masculino , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/toxicidade , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/toxicidade , Polímeros/química , Polímeros/toxicidade , Células RAW 264.7 , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/lesões , Suínos
6.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
J Mater Chem B ; 9(44): 9213-9220, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34698754

RESUMO

Carbon monoxide (CO) can cause mitochondrial dysfunction, inducing apoptosis of cancer cells, which sheds light on a potential alternative for cancer treatment. However, the existing CO-based compounds are inherently limited by their chemical nature, such as high biological toxicity and uncontrolled CO release. Therefore, a nanoplatform - UmPF - that addresses such pain points is urgently in demand. In this study, we have proposed a nanoplatform irradiated by near-infrared (NIR) light to release CO. Iron pentacarbonyl (Fe(CO)5) was loaded in the mesoporous polydopamine layer that was coated on rare-earth upconverting nanoparticles (UCNPs). The absorption wavelength of Fe(CO)5 overlaps with the emission bands of the UCNPs in the UV-visible light range, and therefore the emissions from the UCNPs can be used to incite Fe(CO)5 to control the release of CO. Besides, the catechol groups, which are abundant in the polydopamine structure, serve as an ideal locating spot to chelate with Fe(CO)5; in the meantime, the mesoporous structure of the polydopamine layer improves the loading efficiency of Fe(CO)5 and reduces its biological toxicity. The photothermal effect (PTT) of the polydopamine layer is highly controllable by adjusting the external laser intensity, irradiation time and the thickness of the polydopamine layer. The results illustrate that the combination of CO gas therapy (GT) and polydopamine PTT brought by the final nanoplatform can be synergistic in killing cancer cells in vitro. More importantly, the possible toxic side effects can be effectively prevented from affecting the organism, since CO will not be released in this system without near-infrared light radiation.


Assuntos
Antineoplásicos/farmacologia , Monóxido de Carbono/metabolismo , Corantes Fluorescentes/farmacologia , Nanopartículas Metálicas/química , Antineoplásicos/química , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Corantes Fluorescentes/química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Fluoretos/química , Fluoretos/farmacologia , Fluoretos/efeitos da radiação , Fluoretos/toxicidade , Células HeLa , Humanos , Indóis/química , Indóis/farmacologia , Indóis/efeitos da radiação , Indóis/toxicidade , Raios Infravermelhos , Compostos de Ferro/química , Compostos de Ferro/farmacologia , Compostos de Ferro/efeitos da radiação , Compostos de Ferro/toxicidade , Nanopartículas Metálicas/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Microscopia de Fluorescência , Terapia Fototérmica , Polímeros/química , Polímeros/farmacologia , Polímeros/efeitos da radiação , Polímeros/toxicidade , Porosidade , Túlio/química , Túlio/farmacologia , Túlio/efeitos da radiação , Túlio/toxicidade , Itérbio/química , Itérbio/farmacologia , Itérbio/efeitos da radiação , Itérbio/toxicidade , Ítrio/química , Ítrio/farmacologia , Ítrio/efeitos da radiação , Ítrio/toxicidade
8.
Kidney Int ; 100(6): 1214-1226, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534550

RESUMO

A multitude of disease and therapy related factors drive the frequent development of kidney disorders in cancer patients. Along with chemotherapy, the newer targeted therapeutics can also cause kidney dysfunction through on and off-target mechanisms. Interestingly, among the small molecule inhibitors approved for the treatment of cancers that harbor BRAF-kinase activating mutations, vemurafenib can trigger tubular damage and acute kidney injury. BRAF is a proto-oncogene involved in cell growth. To investigate the underlying mechanisms, we developed cell culture and mouse models of vemurafenib kidney toxicity. At clinically relevant concentrations vemurafenib induces cell-death in transformed and primary mouse and human kidney tubular epithelial cells. In mice, two weeks of daily vemurafenib treatment causes moderate acute kidney injury with histopathological characteristics of kidney tubular epithelial cells injury. Importantly, kidney tubular epithelial cell-specific BRAF gene deletion did not influence kidney function under normal conditions or alter the severity of vemurafenib-associated kidney impairment. Instead, we found that inhibition of ferrochelatase, an enzyme involved in heme biosynthesis contributes to vemurafenib kidney toxicity. Ferrochelatase overexpression protected kidney tubular epithelial cells and conversely ferrochelatase knockdown increased the sensitivity to vemurafenib-induced kidney toxicity. Thus, our studies suggest that vemurafenib-associated kidney tubular epithelial cell dysfunction and kidney toxicity is BRAF-independent and caused, in part, by off-target ferrochelatase inhibition.


Assuntos
Ferroquelatase , Proteínas Proto-Oncogênicas B-raf , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Indóis/toxicidade , Rim/metabolismo , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sulfonamidas/toxicidade , Vemurafenib
9.
ACS Appl Mater Interfaces ; 13(36): 42522-42532, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463488

RESUMO

Tumor-targeted delivery and controlled release of antitumor drugs are promising strategies for increasing chemotherapeutic efficacy and reducing adverse effects. Although mesoporous silica nanoparticles (MSNs) have been known as a potential delivery system for doxorubicin (DOX), they have restricted applications due to their uncontrolled leakage and burst release from their large open pores. Herein, we engineered a smart drug-delivery system (smart MSN-drug) based on MSN-drug loading, cell membrane mimetic coating, on-demand pore blocking/opening, and tumor cell targeting strategies. The pore size of DOX-loaded MSNs was narrowed by polydopamine coating, and the pores/channels were blocked with tumor-targeting ligands anchored by tumor environment-rupturable -SS- chains. Furthermore, a cell membrane mimetic surface was constructed to enhance biocompatibility of the smart MSN-drug. Confocal microscopy results demonstrate highly selective uptake (12-fold in comparison with L929 cell) of the smart MSN-drug by HeLa cells and delivery into the HeLa cellular nuclei. Further in vitro IC50 studies showed that the toxicity of the smart MSN-drug to HeLa cells was 4000-fold higher than to the normal fibroblast cells. These exciting results demonstrate the utility of the smart MSN-drug capable of selectively killing tumor cells and saving the normal cells.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Animais , Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HeLa , Humanos , Indóis/química , Indóis/toxicidade , Camundongos , Nanopartículas/toxicidade , Fosforilcolina/análogos & derivados , Fosforilcolina/toxicidade , Polímeros/química , Polímeros/toxicidade , Porosidade , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Microambiente Tumoral/fisiologia
10.
Eur J Med Chem ; 223: 113631, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34147748

RESUMO

A series of exiguamine A analogues were designed and synthesized via 15 steps. Their inhibitory activities against IDO1 were tested and the structure-activity relationships were studied. Most compounds exhibited potent IDO1 inhibitory activities with IC50 values at the level of 10-7-10-8 M. Compound 21f was the most potent IDO1 inhibitor with an IC50 value of 65.3 nM, which was comparable with the positive control drug epacadostat (IC50 = 46 nM). Moreover, compound 21f showed higher selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO) and no cytotoxicity at its effective concentration, rending it justifiable for further optimization and evaluation.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Compostos de Espiro/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Indóis/síntese química , Indóis/metabolismo , Indóis/toxicidade , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Compostos de Espiro/toxicidade , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 49: 128212, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153471

RESUMO

In this study, a series of multifunctional hybrids (6a-6l) against Alzheimer's disease were designed and obtained by conjugating the pharmacophores of deoxyvasicinone and indole. These analogs of deoxyvasicinone-indole were evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid aggregation (Aß1-42) for treatment of Alzheimer's disease (AD). Subsequently, AChE induced Aß aggregation inhibition test was also performed for selected compounds. Biological activity results demonstrated that compound 6b was the most potent and balanced dual ChEs inhibitor with IC50 values 0.12 µM and 0.15 µM for eeAChE and eqBuChE, respectively. Kinetic analysis and docking study indicated that compound 6b was a mixed-type inhibitor for both AChE and BuChE. Compound 6b also found to be the best inhibitors of self-induced Aß1-42 aggregation with IC50 values of 1.21 µM. Compound 6b also afforded excellent inhibition of AChE-induced Aß1-42 aggregation by 81.1%. Overall, these results indicate that 6b may be considered as lead compound for the development of highly effective anti-AD drugs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Indóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinazolinas/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Desenho de Fármacos , Electrophorus , Cavalos , Indóis/síntese química , Indóis/metabolismo , Indóis/toxicidade , Cinética , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/toxicidade , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Quinazolinas/síntese química , Quinazolinas/metabolismo , Quinazolinas/toxicidade , Ratos
12.
Neurotox Res ; 39(4): 1251-1273, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33945101

RESUMO

Considering the consequences on human health, in general population and workplace, associated with the use of new psychoactive substances and their continuous placing on the market, novel in vitro models for neurotoxicology research, applying human-derived CNS cells, may provide a means to understand the mechanistic basis of molecular and cellular alterations in brain. Cytotoxic effects of MAM-2201, a potent-naphthoyl indole derivative-synthetic cannabinoid, have been evaluated applying a panel of human cell-based models of neurons and astrocytes, testing different concentrations (1-30 µM) and exposure times (3-24-48 h). MAM-2201 induced toxicity in primary neuron-like cells (hNLCs), obtained from transdifferentiation of mesenchymal stem cells derived from human umbilical cord. Effects occurred in a concentration- and time-dependent manner. The lowest concentration affecting cell viability, metabolic function, apoptosis, morphology, and neuronal markers (MAP-2, NSE) was 5 µM, and even 1 µM induced apoptosis. Effects appeared early (3 h) and persisted after 24 and 48 h. Similar behavior was evidenced for human D384-astrocytes treated with MAM-2201. Differently, human SH-SY5Y-neurons, both differentiated and undifferentiated, were not sensitive to MAM-2201. On D384, the different altered endpoints were reversed, attenuated, or not antagonized by AM251 indicating that CB1 receptors may partially mediate MAM-2201-induced cytotoxicity. While in hNLCs, all toxic effects caused by MAM-2201 were apparently unrelated to CB-receptors since they were not evidenced by immunofluorescence. The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human primary neurons (hNLCs) and astrocytes cell line (D384), and support the use of these cellular models as species-specific in vitro tools suitable to clarify the neurotoxicity mechanisms of synthetic cannabinoids.


Assuntos
Astrócitos/efeitos dos fármacos , Canabinoides/toxicidade , Indóis/toxicidade , Naftalenos/toxicidade , Neurônios/efeitos dos fármacos , Astrócitos/patologia , Linhagem Celular Tumoral , Transdiferenciação Celular/efeitos dos fármacos , Transdiferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Neurônios/patologia
13.
Carbohydr Polym ; 266: 118104, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044922

RESUMO

Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.5 for dopamine polymerization. Poly(lactic-co-glycolic acid) (PLGA)/donepezil microsphere (PDM) was embedded into the HD-PEG network for its sustained release. The HD-PEG/α-CD/PDM 8.5 hydrogel system exhibited an immediate gelation pattern, injectability through single syringe, self-healing ability, and shear-thinning behavior. Donepezil was released from the HD-PEG/α-CD/PDM 8.5 hydrogel in a sustained pattern. Following subcutaneous injection, the weight of excised HD-PEG/α-CD/PDM 8.5 hydrogel was higher than the other groups on day 14. These findings support the clinical feasibility of the HD-PEG/α-CD/PDM 8.5 hydrogel for subcutaneous injection.


Assuntos
Portadores de Fármacos/química , Ácido Hialurônico/análogos & derivados , Hidrogéis/química , Indóis/química , Polímeros/química , Animais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/toxicidade , Ciclodextrinas/síntese química , Ciclodextrinas/química , Ciclodextrinas/toxicidade , Donepezila/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Hialurônico/toxicidade , Hidrogéis/síntese química , Hidrogéis/toxicidade , Indóis/síntese química , Indóis/toxicidade , Masculino , Camundongos Endogâmicos ICR , Microesferas , Poloxâmero/síntese química , Poloxâmero/química , Poloxâmero/toxicidade , Polímeros/síntese química , Polímeros/toxicidade , Rotaxanos/síntese química , Rotaxanos/química , Rotaxanos/toxicidade , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/toxicidade
14.
Sci Rep ; 11(1): 9982, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976278

RESUMO

Apoptosis or programmed cell death is a highly regulated process, which eliminates unwanted and damaged cells. Inhibition of apoptosis is a hallmark of cancer cells. BCL2 family proteins are known to play a vital role in the regulation of apoptosis. Overexpression of BCL2, an antiapoptotic protein, provides the advantage of prolonged survival to cancer cells. Over the years, several BCL2 inhibitors have been investigated extensively for their anticancer potential. However, most of them were abolished before clinical use due to their side effects. Previously, we had identified and characterized a novel BCL2 inhibitor, Disarib, with the potential to eliminate tumor cells in a BCL2 specific manner leading to reduction in tumor burden in multiple mouse models. Notably, a head-to-head comparison of Disarib to ABT199, the only FDA approved BCL2 inhibitor revealed that Disarib is as potent as ABT199. Recent studies using mice revealed that Disarib did not invoke significant side effects in mice. In the present study, we have investigated the acute toxicity of Disarib in Wistar rats. The bioavailability studies following exposure of Disarib in Wistar rats revealed its maximum availability in serum at 24 h following oral administration. Acute toxicity analysis revealed that even a dose as high as 2000 mg/kg of Disarib did not cause significant toxicity in rats. There was no significant variation in blood parameters or kidney and liver functions following administration of Disarib. Histological analysis of different tissues from Disarib treated groups revealed standard architecture with no observable cellular damage. Importantly, exposure to Diasrib did not result in genotoxicity as determined by micronucleus assay. Further, solubility assays revealed that besides DMSO, Disarib is also soluble in alcohol. While the high acidic condition can increase the solubility of Disarib, even a lower percentage of alcohol with acidic conditions can improve its solubility. Thus, the toxicological profile in the current study revealed no significant side effects when Disarib was administered orally to rats.


Assuntos
Indóis/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Tiadiazóis/toxicidade , Animais , Disponibilidade Biológica , Indóis/farmacocinética , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ratos Wistar , Tiadiazóis/farmacocinética , Testes de Toxicidade Aguda
15.
BMC Cancer ; 21(1): 270, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711962

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) is a target for cancer therapy as it is overexpressed in a wide variety of cancers. Therapeutic antibodies that bind EGFR are being evaluated in clinical trials as imaging agents for positron emission tomography and image-guided surgery. However, some of these antibodies have safety concerns such as infusion reactions, limiting their use in imaging applications. Nimotuzumab is a therapeutic monoclonal antibody that is specific for EGFR and has been used as a therapy in a number of countries. METHODS: Formulation of IRDye800CW-nimotuzumab for a clinical trial application was prepared. The physical, chemical, and pharmaceutical properties were tested to develop the specifications to determine stability of the product. The acute and delayed toxicities were tested and IRDye800CW-nimotuzumab was determined to be non-toxic. Non-compartmental pharmacokinetics analysis was used to determine the half-life of IRDye800CW-nimotuzumab. RESULTS: IRDye800CW-nimotuzumab was determined to be non-toxic from the acute and delayed toxicity study. The half-life of IRDye800CW-nimotuzumab was determined to be 38 ± 1.5 h. A bi-exponential analysis was also used which gave a t1/2 alpha of 1.5 h and t1/2 beta of 40.8 h. CONCLUSIONS: Here, we show preclinical studies demonstrating that nimotuzumab conjugated to IRDye800CW is safe and does not exhibit toxicities commonly associated with EGFR targeting antibodies.


Assuntos
Drogas em Investigação/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/toxicidade , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/farmacocinética , Benzenossulfonatos/toxicidade , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Estabilidade de Medicamentos , Drogas em Investigação/farmacologia , Drogas em Investigação/toxicidade , Receptores ErbB/antagonistas & inibidores , Feminino , Meia-Vida , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/toxicidade , Indóis/administração & dosagem , Indóis/farmacocinética , Indóis/toxicidade , Aplicação de Novas Drogas em Teste , Masculino , Camundongos , Neoplasias/patologia , Neoplasias/cirurgia , Cirurgia Assistida por Computador/métodos , Testes de Toxicidade Aguda , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 12(1): 1689, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727548

RESUMO

Administration of drugs via the buccal route has attracted much attention in recent years. However, developing systems with satisfactory adhesion under wet conditions and adequate drug bioavailability still remains a challenge. Here, we propose a mussel-inspired mucoadhesive film. Ex vivo models show that this film can achieve strong adhesion to wet buccal tissues (up to 38.72 ± 10.94 kPa). We also demonstrate that the adhesion mechanism of this film relies on both physical association and covalent bonding between the film and mucus. Additionally, the film with incorporated polydopamine nanoparticles shows superior advantages for transport across the mucosal barrier, with improved drug bioavailability (~3.5-fold greater than observed with oral delivery) and therapeutic efficacy in oral mucositis models (~6.0-fold improvement in wound closure at day 5 compared with that observed with no treatment). We anticipate that this platform might aid the development of tissue adhesives and inspire the design of nanoparticle-based buccal delivery systems.


Assuntos
Biomimética , Bivalves/química , Sistemas de Liberação de Medicamentos , Mucosa Bucal/fisiologia , Adesividade , Administração Bucal , Animais , Linhagem Celular , Dexametasona/farmacologia , Di-Hidroxifenilalanina/química , Liberação Controlada de Fármacos , Humanos , Indóis/toxicidade , Masculino , Mucinas/química , Muco/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Polímeros/toxicidade , Álcool de Polivinil/química , Álcool de Polivinil/toxicidade , Ratos Sprague-Dawley , Espectrofotometria Ultravioleta , Suínos , Distribuição Tecidual
17.
Toxicol In Vitro ; 73: 105132, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33662517

RESUMO

Next Generation Risk Assessment (NGRA) can use the so-called Dietary Comparator Ratio (DCR) to evaluate the safety of a defined exposure to a compound of interest. The DCR compares the Exposure Activity Ratio (EAR) for the compound of interest, to the EAR of an established safe level of human exposure to a comparator compound with the same putative mode of action. A DCR ≤ 1 indicates the exposure evaluated is safe. The present study aimed at defining adequate and safe comparator compound exposures for evaluation of anti-androgenic effects, using 3,3-diindolylmethane (DIM), from cruciferous vegetables, and the anti-androgenic drug bicalutamide (BIC). EAR values for these comparator compounds were defined using the AR-CALUX assay. The adequacy of the new comparator EAR values was evaluated using PBK modelling and by comparing the generated DCRs of a series of test compound exposures to actual knowledge on their safety regarding in vivo anti-androgenicity. Results obtained supported the use of AR-CALUX-based comparator EARs for DCR-based NGRA for putative anti-androgenic compounds. This further validates the DCR approach as an animal free in silico/in vitro 3R compliant method in NGRA.


Assuntos
Antagonistas de Androgênios/toxicidade , Anilidas/toxicidade , Indóis/toxicidade , Modelos Biológicos , Nitrilas/toxicidade , Receptores Androgênicos/metabolismo , Medição de Risco/métodos , Compostos de Tosil/toxicidade , Adulto , Antagonistas de Androgênios/farmacocinética , Anilidas/farmacocinética , Alternativas aos Testes com Animais , Bioensaio , Linhagem Celular Tumoral , Exposição Ambiental , Humanos , Indóis/farmacocinética , Masculino , Nitrilas/farmacocinética , Compostos de Tosil/farmacocinética
18.
Circ Heart Fail ; 14(2): e007058, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33541093

RESUMO

BACKGROUND: Right ventricular (RV) dysfunction is a significant prognostic determinant of morbidity and mortality in pulmonary arterial hypertension (PAH). Despite the importance of RV function in PAH, the underlying molecular mechanisms of RV dysfunction secondary to PAH remain unclear. We aim to identify and compare molecular determinants of RV failure using RNA sequencing of RV tissue from 2 clinically relevant animal models of PAH. METHODS: We performed RNA sequencing on RV from rats treated with monocrotaline or Sugen with hypoxia/normoxia. PAH and RV failure were confirmed by catheterization and echocardiography. We validated the RV transcriptome results using quantitative real-time polymerase chain reaction, immunofluorescence, and Western blot. Immunohistochemistry and immunofluorescence were performed on human RV tissue from control (n=3) and PAH-induced RV failure patients (n=5). RESULTS: We identified similar transcriptomic profiles of RV from monocrotaline- and Sugen with hypoxia-induced RV failure. Pathway analysis showed genes enriched in epithelial-to-mesenchymal transition, inflammation, and metabolism. Histological staining of human RV tissue from patients with RV failure secondary to PAH revealed significant RV fibrosis and endothelial-to-mesenchymal transition, as well as elevated cellular communication network factor 2 (top gene implicated in epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition) expression in perivascular areas compared with normal RV. CONCLUSIONS: Transcriptomic signature of RV failure in monocrotaline and Sugen with hypoxia models showed similar gene expressions and biological pathways. We provide translational relevance of this transcriptomic signature using RV from patients with PAH to demonstrate evidence of epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition and protein expression of cellular communication network factor 2 (CTGF [connective tissue growth factor]). Targeting specific molecular mechanisms responsible for RV failure in monocrotaline and Sugen with hypoxia models may identify novel therapeutic strategies for PAH-associated RV failure.


Assuntos
Transição Epitelial-Mesenquimal/genética , Insuficiência Cardíaca/genética , Hipertensão Arterial Pulmonar/genética , Disfunção Ventricular Direita/genética , Remodelação Ventricular/genética , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/toxicidade , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Hipóxia , Indóis/toxicidade , Masculino , Pessoa de Meia-Idade , Monocrotalina/toxicidade , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Pirróis/toxicidade , RNA-Seq , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia
19.
Pharmacol Biochem Behav ; 202: 173118, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497715

RESUMO

BACKGROUND: Smoking mixtures containing synthetic cannabinoids (SCs) have become very popular over the last years but pose a serious risk for public health. Limited knowledge is, however, available regarding the acute effects of SCs on cognition and psychomotor performance. Earlier we demonstrated signs of impairment in healthy volunteers after administering one of the first SCs, JWH-018, even though subjective intoxication was low. In the current study, we aimed to investigate the acute effects of JWH-018 on several cognitive and psychomotor tasks in participants who are demonstrating representative levels of acute intoxication. METHODS: 24 healthy cannabis-experienced participants took part in this placebo-controlled, cross-over study. Participants inhaled the vapor of 75 µg JWH-018/kg body weight and were given a booster dose if needed to induce a minimum level of subjective high. They were subsequently monitored for 4 h, during which psychomotor and cognitive performance, vital signs, and subjective experience were measured, and serum concentrations were determined. RESULTS: Maximum subjective high (average 64%) was reached 30 min after administration of JWH-018, while the maximum blood concentration was shown after 5 min (8 ng/mL). JWH-018 impaired motor coordination (CTT), attention (DAT and SST), memory (SMT), it lowered speed-accuracy efficiency (MFFT) and slowed down response speed (DAT). CONCLUSION: In accordance with our previous studies, we demonstrated acute psychomotor and cognitive effects of a relatively low dose of JWH-018.


Assuntos
Canabinoides/toxicidade , Cannabis/química , Disfunção Cognitiva/induzido quimicamente , Drogas Ilícitas/toxicidade , Indóis/toxicidade , Naftalenos/toxicidade , Extratos Vegetais/toxicidade , Transtornos Psicomotores/induzido quimicamente , Uso Recreativo de Drogas/psicologia , Medicamentos Sintéticos/toxicidade , Administração por Inalação , Adulto , Atenção/efeitos dos fármacos , Canabinoides/administração & dosagem , Canabinoides/sangue , Cognição/efeitos dos fármacos , Disfunção Cognitiva/sangue , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Drogas Ilícitas/sangue , Indóis/administração & dosagem , Indóis/sangue , Masculino , Naftalenos/administração & dosagem , Naftalenos/sangue , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Transtornos Psicomotores/sangue , Desempenho Psicomotor/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Medicamentos Sintéticos/administração & dosagem , Adulto Jovem
20.
NanoImpact ; 24: 100353, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35559812

RESUMO

Currently, the potential applications of polydopamine (PDA) nanoparticles in the biomedical field are being extensively studied, such as cell internalization, biocompatible surface modification, biological imaging, nano-drug delivery, cancer diagnosis, and treatment. However, the subsequent toxicological response to PDA nanoparticles, especially on nervous system damage was still largely unknown. In this regard, the evaluation of the neurotoxicity of PDA nanoparticles was performed in the developing zebrafish larvae. Results of the transmission electron microscope (TEM), diameter analysis, 1H NMR, and thermogravimetric analysis (TGA) indicated that PDA nanoparticles had high stability without any depolymerization; the maximum non-lethal dose (MNLD) and LD10 of PDA nanoparticles for zebrafish were determined to be 0.5 mg/mL and 4 mg/mL. Pericardial edema and uninflated swim bladders were observed in zebrafish larvae after exposure to PDA nanoparticles. At a concentration higher than MNLD, the fluorescence images manifested that the PDA nanoparticles could inhibit the axonal growth of peripheral motor neurons in zebrafish, which might affect the movement distances and speed, disturb the movement trace, finally resulting in impaired motor function. However, in further investigating the mechanism of PDA nanoparticles-induced neurotoxicity in zebrafish larvae, we did not find apoptosis of central neurocytes. Our data suggested that PDA nanoparticles might trigger neurotoxicity in zebrafish, which could provide an essential clue for the safety assessment of PDA nanoparticles.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Indóis/toxicidade , Larva , Nanopartículas/toxicidade , Polímeros/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA